. I
WP3 - DEVELOPMENT OF ENHANCED TRAVEL
COMPANION AND RIDE-SHARING TSP

D3.3 CROWD-BASED TRAVEL EXPERT SERVICE

Shift”Rail L>

This project has received funding from the Shift2Rail Joint Undertaking under the
European Union’s Horizon 2020 research and innovation programme under grant
agreement no. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

Project Acronym RIDE2RAIL
Starting date 01/12/2019
Duration (in months)

Deliverable number

Call Identifier

GRANT Agreement no

Due date of the Deliverable

Actual submission date
Resposible/Author

Dissemination level

Work package

Main editor Luca Mariorenzi

Reviewer(s) OLTIS, INLECOM

Status of document
(draft/issued)

Reviewed: yes

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel

Consortium of partners

Version 1.0 31/05/2022

PARTNER

UNION INTERNATIONALE DES TRANSPORTS PUBLICS (UITP)

FIT CONSULTING
OLTIS GROUP
FST

CEFRIEL

CERTH

EURNEX
EURECAT
POLIMI
UNIVERSITY OF NEWCASTLE UPON TYNE
UNIFE

uIC

UNIZA

ATTIKO METRO
INLECOM
FV-Helsinki
METROPOLIA

COUNTRY

Belgium

Italy

Czech Republic

ltaly

ltaly

Greece

Germany

Spain

Italy

United Kingdom

Belgium

France

Slovakia

Greece

Greece

Finland

Finland

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

DOCUMENT HISTORY

01/04/2022 Table of content
12/05/2022 First complete draft

24/05/2022 Pre-final version addressing reviewers comments

N W O ON -

27/05/2022 Final version

REPORT CONTRIBUTORS
Luca Mariorenzi FST Lead author
Simone Salviati FST Author
Diego Lisi FST Author
Enrica Caiello FST Author
Alexander Nemirovskiy | PoliMI Contributor
Matteo Rossi PoliMi Contributor
Alessio Carenini Cefriel Contributor
Harris Niavis INLECOM Reviewer
Petra Jurankova OLTIS Reviewer
Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view - the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and
liability.

The content of this report does not reflect the official opinion of the Shift2Rail Joint

Undertaking (S2R JU). Responsibility for the information and views expressed in the report
lies entirely with the author(s).

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

Contents
1. EXECUTIVE SUMMARY Lottt 7
1.1. Abbreviations @and @CIrONYMS ...ttt 8
2. BACKGROUND ..ottt ettt nreen 10
3. OBUJECTIVES/AIM oottt n
4. CONTENT OF DELIVERABLE ..ottt 12
4.1. INEFOAUCTION coii ettt tes 12
4.2, THIP PlanN@r .ottt ettt ettt s bbbttt ettt b sttt a et 14
4.2.1. High level component deSCriptioN ... 14
4.2.2. Main FUNCHIONAITIES c.cviiiiiieiicce e 14
4.2.3. Technical and implementation detailS ... 14
4.3, BACK=ENG i b bbb bbb bbb bene 15
4.3.1. High level component deSCriptioN ...t 15
4.3.2. Main FUNCLIONAITIES c.cviiiiiiieic st 16
4.3.3. Technical and implementation detailS.......cccvveeiiicciice e 16
A4, OFCRESTIATON coceiiieie ettt 16
4,40, Main FUNCHIONAITIES .o 17
4.4.2. Technical and implementation detailS ... 18
A5, THIP TIrACKING ottt ettt ettt st ettt s et ese et ess et est et et et et ese et essesensesenseseans 19
4.5.1. General overview Of the SErVICe ... 19
4.5.2. High level component deSCriplion ... 20
4.5.3. Technical implementation of the SErviCe ... 22
A5, 4, INGIESS APttt ettt ettt tete ettt eteerean 23
4.55. Ride progress MOTUIE ...ttt ettt s e esns 24
4.5.6. SUDSCrIPtioN MOAUIE ..ottt ne 24
4.6, ASSEE MANAGET ittt bttt s b st s st b et et et n et s et eneene st enenes 25
4.6.1. P4 SEIrVICE AESCIIPTON ittt ettt s e s s s re e 27
4.6.2. P4 Service lifECYCIE PrOCESS ..ottt ettt b et raeaen 30
CONCLUSIONS L.ttt a8 s b es st s bbbt s bbb anres 32

5. REFERENGCESttt 34

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

List of figures

FIigure T General ArChItECIUIC. ...ttt ettt 13
Figure 2 CbTSP's interactions with other Ride2Rail components.......ccccevvveiveecevececeeceeeeen, 13
Figure 3 Component diagram in Ride2Rail @COSYSEeM ... 20
Figure 4 Detection SYSTeM iagrami .. ettt ettt ettt ettt se s 21
Figure 5 Current implementation of Ride tracking SEIrVICe.....ccocceiveieevieicieeeceeeeveeee e 23
Figure 6 AsSSet ManNager MAIN SCIEEN ...ttt ettt sttt stesesteseeseseesessesessesaeseseesessesenes 26
Figure 7 Asset Manager: liStiNG P4 SEIVICES. ...t sens 26
Figure 8 Asset manager: P4 Service deSCriptioN . 27
Figure 9 Asset Manager: capturing structured description of an IP4 Service......cccvvveennnn, 28
Figure 10 Asset Manager: IP4 Service publication ProCessS......ciiceeeiceeeeee s 31

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

1. EXECUTIVE SUMMARY

This deliverable describes the results of Task 3.3 - CbTSP formally known as Crowd Based
Travel Service Provider, developed in the scope of the RIDE2RAIL (R2R) project. The main
objective is to create an innovative framework for smart multimodal mobility by facilitating
the efficient combination of flexible and crowdsourced transport services, such as
ridesharing, with scheduled transport. This framework will be integrated into existing
collective and on-demand transport services, connecting and reinforcing the mobility offer
with ridesharing services, especially in rural and low-demand areas.

The goal of Ride2Rail project is to enable access to high-capacity services (public
transport services) thanks to easy-to-use multimodal and integrated travel planning,
booking, ticketing, and payment features. The Ride2Rail framework will integrate real-time
and various information about rail, public transport, and shared mobility in a social
ecosystem.

The CbTSP is a Hybrid TSP in the sense that is a software solution with an intrinsic duality;
it has to act similarly to a standard TSP, in the sense that has to provide “travellers” with
travel solutions based on the properties of their requests (i.e, departure coordinate, arrival
coordinate, date and time). The core difference is that the planned routes that are used to
compute the solutions for the “travellers” are not based on a fixed schedule as may be
found in a standard TSP (i.e the web application of a bus public transportation service,
where bus lines and bus stops are fixed over long periods of time) but those “routes” are
generated dynamically starting from specific interactions that “drivers” entities have with
the CbTSP.

A “driver” may decide to offer a seat in his car for any traveller to reserve, in that case it
interacts with the CbTSP sending useful information (i.e his departure coordinates and
arrival coordinates, starting date and time), the CbTSP computes for him a route which
includes in a “Trip Plan” that gets inserted into the CbTSP data sets. From that point, this
“planned trip” may appear to a traveller as a travel solution if it matches his search criteria
among other similar solutions. If that solution satisfies his needs, he can then reserve a seat
for that specific “ride” (lift reservation).

The core offered functionalities are:

e Ability to register as a driver

e Ability for a driver to plan, modify or delete a ride in a specific day and time

e Ability for an unregistered user / external system to search for available lifts
matching criteria

e Ability for an unregistered user / external system to reserve a seat on a ride (lift
reservation)

e Ability for an unregistered user / external system to cancel a reservation

In short terms, the CbTSP merges the functionality of a TSP with the one of a Social
carsharing solution.

he CbTSP solution has been developed as a collection of specific submodules, when each
them is responsible for a specific aspect of the ecosystem:

Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

e a planner component which is responsible for route planning and rides;

e a backend for anagraphics, rides and lifts logics and general data storage such as
the rides planned on the planner;

e an orchestrator that manages those submodules and offers an external interface
(APD).

This Deliverable is intended to be a companion to the software documentation available on
GitHub under the RIDE2RAIL organization at https://aithub.com/Ride2Rail.

1.1. Abbreviations and acronyms

Application Programming Interface
Calls for Members

Crowd-based transport service provider
Create, read, update, delete
Dissemination and exploitation leader
Description of the A

Ethical leader

European Union

First in - First out

Financial Statement

Horizon 2020

Innovation Programme 4

Open Call

Project coordinator

Project manager

Project Management Office
ment Team

Project Officer

Partial Trip Tracker

Quality Assurance Committee

. Ride progress module

8 Shift7Rail BN

Contract No. 881825

https://github.com/Ride2Rail

D3.3 Crowd-based Travel

Ride tracking component

Shift2Rail Joint Undertaking
Travel companion
Technical leade

Tracking Orchestrator

Trip Tracking Service
Transport service provider

Work Package

Work package leader

Version 1.0 31/05/2022

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

2. BACKGROUND

This document constitutes the Deliverable D3.3 "Crowd-based Travel Expert Service” in
the framework of WP3 "Development of enhanced Travel Companion and Ride-sharing
TSP" and describes what has been developed within Task 3.3 "Crowd-based Travel Expert
Service” of Ride2Rail project.

10 hiftRail N

D3.3 Crowd-based Travel Version 1.0 31/05/2022

3. OBJECTIVES/AIM

The general goal of this deliverable is to provide relevant information about the
implementation of the Crowd-based Travel Service Provider, focusing on the components
that allow users and communities to build their own TSPs to offer shared rides by their
own private car.

The task in the Grant Agreement was described as follows:

“In order to give individuals and communities the ability to act as self-organized TSPs
using their own vehicles, this task will develop software tooling allowing them to build, test
and publish Travel Expert web services to the TSP ecosystem through an Asset Manager-
based lifecycle process. Built on the Interoperability Framework’s Asset Manager, the tool
is designed to instantiate a Travel Expert web service out of generic template stubs
configured by the users with the specifics of their offering capabilities. The testing phase in
the lifecycle includes the application of syntactic, semantic and ecosystem governance
validation rules. On publication, the Travel Expert is registered in the Travel Expert registry
and available to the Interoperability Framework Services. This task will take advantage
from the SocialCar project in reusing and engineering algorithms and modules of the
Travel Expert for trip planning combining Ride Sharing and scheduled transport services.”

To this end, all relevant components will be described in details:

e CbTSP components
o Trip planner
o Back-end
o Orchestrator

e Trip tracking

e Asset manager

m hiftRail N -

D3.3 Crowd-based Travel Version 1.0 31/05/2022

4. CONTENT OF DELIVERABLE

4.1.Introduction

Crowd Based Travel Service Provider, also known as Crowd Based Travel Expert (from
now on simply referred as CbTSP) is a collection of specifically developed components
that plays at unison to achieve a very specific functionality, which is to offer a TSP alike
service to general people, where potentially the same people can act both as “traveller”
and as “drivers” intercheangeably. If someone wants to offer a Ride, the CbTSP offers
facilities to plans ahead the future route, and add that plan to it’s collections of available
“rides” for a potential traveller to look for, while if someone is looking for a “lift”, the same
collection of software offer facilities which allows him to look for available offered rides,
the possibility to book them, cancel them and so on.

As said before all the funcionalities are achieved by more than one project of which the
specific functionalities gets orchestrated in order to achieve all the final goals (plan a ride,
offer a ride, cancel a ride, search for an available lift, reserve a lift etc). For this purpose,
SocialCar project’s' algorithms and modules of the Travel Expert for trip planning
combining Ride Sharing and scheduled transport services have been reused.

BAlquiler de coches particulares - SocialCar

12 hiftRail N -

https://www.socialcar.com/

Version 1.0 31/05/2022

D3.3 Crowd-based Travel

“ Sends and retrieves toffrom
m persistance services, all
manipulated data coming

L from Trip Planner i‘
rchestrator , Orfrom the external world\ds T e

Webservice APl n API for ingesting objects,
and coordinator [R Rides, Lifts, Trips, Plans
{customized social car backend)

MongoDB

Sends and retrieves: route

. planning
request/responses,
. trip planning insertion requests,
. search for lift requests API for computing geospatial data
\ planning routes, handling planned
[] ndes and engine for searching for

lifts
(customize OTP)

Internal components

Figure 1 General Architecture

Register, read, update and delete: driver,car rides

Mobile Application TSP funcionalities
REST API

Tiravel companion

asl for route replan

Sends stop tracking request,
on cancelled rides
Check Rides status,

ma
&3ct Trip Tracking

. Sends notifications Tracking funcionalities
REST API

Sends GPS coordinates updates

Figure 2 CbTSP's interactions with other Ride2Rail components

Shift2Rail IS

D3.3 Crowd-based Travel Version 1.0 31/05/2022

4.2. Trip Planner

4.2.1. High level component description

Trip planner component is the piece of software responsible for the functionalities related
to route evaluation, route planning and scheduling, its main purpose is to expose facilities
to allow from external interaction to request a route plan from a source point to a
destination point, in this case it acts similarly to a standalone GPS navigator, or as a service
like Google Maps. Once the route has been planned, it can be asked to store that route and
to include it in its data structure as a planned ride, in this case if an external request comes
asking for a lift (so an available ride from nearby a certain source point and destination
point) the planner will scan among its internal data structure of beforhand inserted
planned rides, for all the rides compliant with the request.

4.2.2. Main Functionalities

Trip Planner main functionalities are:

1. Computing a route from point A to point B and sending this route as a response like
a planned car route (generally speaking, similar to a standard gps navigator or
Google Maps service).

2. Plan a Ride in a specific date/time with an associated route between two endpoints
and insert it into its datastructures such that it can be searched as a travel service
(this basically means that the planned ride poses itself like public transportation ride,
but it’s offered by a person, by car).

3. Search for possible Rides in a specific date/time betwen two endpoints. This
functionality allows some degree of slack with respect to the endpoints and the time
of departure (i.e if someone asks for departure at a 9:00 am from a certain geospatial
point, he will get more than one results starting from all those rides that depart at
9:00 am nearby his departure point of interest.

4. Delete aride from the planned ones.

Strictly speaking, the Trip Planner does not hold information about drivers or passengers,
aside from some unique ids representing the driver, as it’s an engine responsible for route
planning and rides definition.

4.2.3. Technical and implementation details

7 hift 2Rail IS

D3.3 Crowd-based Travel Version 1.0 31/05/2022

The trip planner implementation is based on a customization of the OpenTripPlanner
project?, which is developed in Java, customizations involved enabling the software to take
and store dynamically planning requests in response to an input from the outside world,
based on the geospatial data configured internally.

Requests are handled in a REST fashion for ease of integration and includes the possibilities
to plan a route from two points (source and destination), to store that route as a planned
ride for a specific date and time (offered ride) and so on.

The more store requests it gets, the more its “available ride set” grow accordingly. This
dynamically maintained data structure is built by users requests and becomes available as a
constantly changing set of rides, when an external system posing as traveller sends a
request: are there any “public transport like” rides available from point A to point B? The
systems answers with a collection of compatible “offered rides”.

4.3.Back-end

4.3.1. High level component description

The general backend is based on SocialCar backend component with some modifications
to adapt it to its new purpose, this component is used to store all the anagraphics and in
general, related objects informations. It’s responsible for holding informations about the
drivers (like usernamame, passowrd etc) but also other object of interests like the car
associated to a driver, the rides he decides to publish, but also the Lifts (which are the
reservation that passengers requests on a specific Driver’s offered Ride). Rides and Lifts
also encompass a simplyfied version of the planned route produced by the Trip Tracker
(basically stripped from useless, debug or redundant informations).

This component saves also the planned Ride from the context of the Trip Planner. Since
Trips in the Trip Planner are generated “on the fly” whenever a request is formulated, after
being inserted in the Trip Planner datastructure which is not persistent for performance
reasons, they are also stored into the backend database, just in case there is the need for a
restart of the trip planner component, so that those already planned Rides can be restored
into the Trip Planner component without much hassle. Backend acts basicaly as a “library
of objects”, aside from the logic to ensure consistency a and correctness of the data
stored, it does not perform other core business logic which are mainly handled by the
Orchestrator component.

penTripPlanner

Shift7Rail BN -

Contract No. 881825

https://www.opentripplanner.org/

D3.3 Crowd-based Travel Version 1.0 31/05/2022

4.3.2. Main Functionalities

Back-End main functionalities are basically CRUD operations, more specifically:

e Managing driver entity

e Managing associated objects to driver entity like cars

e Managing offered Ride objects, (i.e a Driver wants to offer a Ride with is Car, with a
specific planned route on a specific day, his car has some properties, like the number
of seats available which determines the maximum number of passengers he can
transport). Some of the information in the ride objects comes from other
components like the Trip Planner, and the Orchestrator is responsible for the correct
processing, asssembling and storing onto the backend

e Managing Lifts. Similarly to the Ride objects, the heavylifiting of the computation is
done by the Orchestrator which ultimately saves the reserved lift onto the backend
which is basically responsible for updating and correctly linking the objects togheter
(i.e a reserved lift refers to a specifi ride, so once a request for storing a lift is made,
the appropriate ride gets updated with the lift information)

4.3.3. Technical and implementation details

The back-end implementation is based on a slightly modified version of the SocialCar
backend module which is implemented in python language which stands as a backend
with REST API capabilities interfacing with an instance of mongoDB.

Of all the functionalities offered by this module, only those useful for anagraphics are used,
basically CbTSP uses the SocialCar backend to persist informations about the business
objects (drivers, rides, lift etc.) using internally the already strong and well developed
backend REST API plus it stores directly onto the mongoDB instances the route planning
object processed by the trip-planner module so that they can be restored automaticaly in
case there is the need to restart the module, since those objects are not persisted by the
trip-planner.

CbTSP backend basically acts as an interface to a mongoDB instance offering simple REST
API to insert syntactically correct objects in the interest of the specific context, it’s an
internal module that is used only by the CbTSP director module (the Orchestrator).

4.4 Orchestrator

The Orchestrator is the focal point of interest of the CbTSP, albeit all other components
are far from being of lesser importance, this is basically the entry point for external
requests and the component responsible for manipulating all the objects that come from
the other two submodules, in a way to enforce coherence and meaning. The Orchestrator
ffers external REST API’s for interact with the CbTSP and “de facto” implements calls that
aps the use cases requested for this component. It is then responsible to make so that,

r example there is a non ambigous relation from the representation of a trip object of the

16 Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

Trip Planner component, and a ride object in the context of the backend so that the two
objects are uniquely correlated, also since the sets of trips in the context of the Trip
Planner is a volatile and ever changing ensamble, it is also responsible for storing the trip
plans into the backend so that if there are needs for restarts or reconfiguration of the Trip
Planner component, the orchestrator can detect that and reinsert the still valid, previously
computed trips again into the Trip Planner components.

4.41. Main Functionalities

Main functionalities regarding the Orchestrator are to pose as an entry point for every
service that would like to interact to the CbTSP. This means that it is the Orchestrator that
offers the API that is exposed to the world in order to do any kind of operations. The
entrypoints offerd with the API covers te functions below:

e Driver Functionalities:
o Driver creation
o Driver retrieval
o Driver information update
o Driver deletion
e Cars (of a driver) Functionalities
o Car creation
o Car retrieval
o Carinformation update
o Car deletion
e Ride Functionalities
o Ride creation
o Ride retrieval
o Ride information update
o Ride deletion
e Booking Functionalities (a.k.a Lift Functionalities)
o Search for any available lift based on condition
o Book a Lift (reservation)
o Delete a Lift (cancellation)

Driver and Car Functionalities are basically standard CRUD operations, while Rides and
Lifts involves a more complex logic, as stated before the Orchestrator offers the external
endpoints for the requests, but then it processes those requests in a way to ensure
coherence and non ambiguity and forwards those processed requests to the submodules
of interest (Planner, Anagraphics back end). For example in case of a driver or a car
creation, update or deletion it might not be necessary to interact with all the submodule,
but only with the anagraphics backend, While when creating a ride, for example the steps
are more complex such as:

1. Retrieving from backend unique informations about the Driver and his car (id’s)
2. Forwarding to the planner module the parameters useful for planning (such as the
starting and ending points, departure date etc), associated with thouse unique ids

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

3. Planners compute a route based on the maps its configured with, create a trip plan
in its internal structures referencing those unique id’s at point 1, and respond to the
Orchestrator with the computed plan

Orchestrator stores the plan in the backend for safety and backup purposes
Orchestrator processe the plan, extracting the necessary informations computes a
Ride object and stores it into the backend

ok

At this point a ride has been created, it has been associated to a plan in the trip planner and
it is available for the search algorithms

When searching for a lift:

1. Orchestrator receives the request parameters, computes them and create a specific
request for the Trip Planner

2. Trip Planner searches into his data structures available plans that suits the requests
and send them back to the Orchestrator

3. Orchestrator receives these plans, processes them and formats them as Lift objects
(at this point every plan is associated with a temporary lift object, uniquely
associated to a Ride, and consequentely to a Driver and a car)

4. Orchestrator responds to the external request with a list of available possible lifts

If then an external system uses one of those object received, in the booking reservation
endpoint, an association will be created between that lift and the relative ride, and it’s
persisted onto the backed.

At that point there will be:

e A Ride with a lift associated to it
e A Lift associated with a Ride
e A planin the Planner associated with the Ride

NOTE: The CbTSP interacts with the AL, so during Lift reservation or Lift cancellation,
the correspondent objects on the AL gets updated consequently

More information about the CbTSP API can be found in the specific documentation hosted
in the project Github repository at this provided link: Ride2Rail/CbTSP-r2r-Docker:
Repository for CbTSP docker stack (github.com)

4.4.2. Technical and implementation details

The whole component has been designed in house, using Java and Spring Framework
functionalities, it communicates internally with the other components of CbTSP using
REST API and exposes REST API to the external systems. The Orchestrator and all the
other components are available as a stack of docker containers with all the endpoints
already configured and editable as needed, more information can be retrieved at the
official CbTSP docker repository: Ride2Rail/CbTSP-r2r-Docker: Repository for CbTSP
docker stack (github.com)

Shift7Rail BN -

Contract No. 881825

https://github.com/Ride2Rail/CbTSP-r2r-Docker
https://github.com/Ride2Rail/CbTSP-r2r-Docker
https://github.com/Ride2Rail/CbTSP-r2r-Docker
https://github.com/Ride2Rail/CbTSP-r2r-Docker

D3.3 Crowd-based Travel Version 1.0 31/05/2022

4.5, Trip Tracking

4.5.1. General overview of the service

Purpose

The Trip Tracking Service (TT) is a software responsible for providing a way to track a ride
during its execution and inform interested third-party components in its progress. After a
route has been planned through other components in the Ride2Rail ecosystem, the driver
can activate its tracking from the Driver Companion Application which will then
communicate with the Trip Tracking Service in the background to complete this request.

Once this phase has been dealt with, the Driver Companion can now send periodical
position updates to the TT for the entire duration of the ride or until its cancellation. These
updates will be used to compute an estimation of how much time the driver has left to
reach their destination, and inform the Tracking Orchestrator in case a significant
difference is measured between the time to get to a destination and the time estimated
during the planning phase of the ride, which likely means a delay or disruption of the ride
has been observed.

This tight communication structure between different components of the R2R ecosystem
can be seen in Figure 2: here the main actors of the above scenario are shown. As an side
note, the picture also introduces the internal structure of the TT itself by depicting the
service divided into two separate modules based on their purpose: the Ride Progress and
the Subscription module.

The approach is to maintain those modules separate because of their not overlapping
goals which facilitates horizontal scaling of the software as each service can be replicated
to increase the overall throughput of the requests directed towards the TT. To support
this, a number of different decisions have been made and will be presented in details in the

following sections.

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

R2R Crowd-based TSP

Orchestrator

Ride
Intormatlon Ride
“getDriver Management
+getRlde(\ /‘Hcemue

+getRoute
Driver « RideProgress 33 | Subscription & |
Companion CJ - locateOnMap(p: Position, r: ride)["™~~~ - publish(n: Notification)

R2R Ride Trac§§ /

RideTrackerl - estimateDelay
+startTracking(r: Ride)
+notifyPosition(pos:Position), / \
RideMonitoring
~ ssubscriba(r: TOrchestratorl

Ride) -+notifylmpact

Tracking

Orchestrator

Figure 3 Component diagram in Ride2Rail ecosystem

Interaction within the ecosystem

Before describing the individual components the TT consists of though, let us show how
the service in its entirety is supposed to interact within the existing R2R ecosystem of
components. Figure 3 encompasses this interaction in the flow of requests made by the
individual pieces shown earlier. As displayed here, the TT makes use of both direct and
indirect communication exchanges with the other elements of the ecosystem. This is
crucial to detect possible bottlenecks that might slow the application down during peak
service times. To better accommodate an increase of incoming request, the
communication within the service has been made asynchronous, but this is not possible for
some outgoing requests to the R2R ecosystem components, like the CbTSP, since their
response is needed before process can go further.

4.5.2. High level component description

Ride progress component

The ride progress component deals with everything related to a trip monitoring. It
gisters requests to track a specific ride, incoming position updates for them that will be
nt in by a Travel Companion during a ride execution. The component relies heavily on

20 Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

the communication with the CBTSP to obtain information about routes drivers choose to
follow, and all of their intermediate stops and checkpoints. This is crucial for the
correctness of delay estimation and its subsequent delivery to the TO. Without it, the Ride
tracker cannot carry on its purpose.

drC:R2R Driver o ta:Tracking
Companion rtRideTracker CbTSP Orchestrator
- startTracking(rRide) | n |
Jl vernifylds(r:Ride) |
P i ki S :
returm i
e T . |
i M getRoute(r:Ride) i
i return i
: A :
E initProgress E E
Sendh::‘:illlonj [" - - " verifylds : i
nofifyPasition{p:Position) i
_______ eun 5
retum | i
e | |
locateOnMap i i
(p:Position) ! 1
i estimateDelay ' i
i |: ; {p:Position, rRoute) i
i opt: if not a notifylmpact(iimpact) i
: null L_‘ T >
Figure 4 Detection system diagram
Main Functionalities
. Managing requests to begin the tracking activity for a ride. When such a

request is made to the RT, this module verifies with the CBTSP that the information
necessary to identify the requester, i.e. Driverld and Rideld, are related to a
registered entity, it saves them in a transient storage, and asks the CbTSP for a ride
object associated with them. This object contains a planned route with all the
intermediate stops the driver decided to make on the way, and a time estimate for
when every stop will be reached.

. Accept and process a position update from the driver’s travel companion.
Once the tracking process has been requested, the RP is ready to accept positional
information related to a driver. This information contains but a pair of geographical

21 hiftRail N

D3.3 Crowd-based Travel Version 1.0 31/05/2022

coordinates, a timestamp to attest when the position has been registered, and the
driver’s and ride’s identification numbers.

. The request is then used to locate the driver’s vehicle on the route, and
subsequently estimate a possible delay by comparing its last known position with
the time estimates received for this route from the CbTSP.

Subscription Component

The Subscription component gathers information about all actors interested in receiving
notifications when a delay occurs during a ride execution. It fills the role of a partial Trip
Tracker (pTT) for the TO. Whenever a delay on a particular ride is measured by the Ride
Progress module, it is communicated through the internal message bus to this component
that takes care of dispatching an HTTP message to all the interested parties. In this
context, the notification is wrapped in a structure compliant with the TRIAS specification
required by the current TO implementation, but changing it to a different format is also
possible in the future.

Main Functionalities

e Managing subscriptions to a particular ride execution. The information is directly
coming from the TO, and it must include an identifier for the component interested
in delay notifications, an identifier for the ride said component is interested in, and
an address in URL format that represents the destination to which the message
must be sent to. This iteration of the software only deals with HTTP/s protocol for
the publishing endpoint required by this component, but later modifications to
augment its capabilities are possible.

These subscriptions are saved in the local storage of this component for further
use, modification or deletion.

e Publish the delay notification estimated by the RP. Whenever the RP determines a
delay in the progress of a particular ride, it sends a message to this component that
wraps the information in TRIAS-compliant notification, retrieves all the addresses of
subscribers interested in the aforementioned ride, and sends the message to them
via an HTTP request.

Restrictions and limitations imposed by the TO implementation made it so that this
is a best-effort process: the notification is sent by what can be described as a "fire
and forget” mechanism, as the Subscription component will not track unsuccessful
dispatches.

4.5.3. Technical implementation of the service

This section aims to showcase the Ride tracking service in technical detail to better present
its internal workflow and choices made during its design. Figure 4 depicts the current
situation of TT architecture. A quick summarization of the different parts comprising the
software is as follows:

e Two ingress APIs
o Subscription API

22 Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

o Trip Tracking API
e A message gueue for incoming request
e RideProgress module with a persistent storage
e Subscription module with a transient and a persistent storage.

Each of these main items is discussed in details in the upcoming sections.

‘ CRTSF

-———{_H'Tﬁﬁ———-

=
[

Ride
Tracking
API

I} Perstent
i} Storage |

Message queue

ImpactEvent

Subseription
API

ac Persi i
Cache ;;g‘;“ RZR Ride
Tracking

Figure 5 Current implementation of Ride tracking service

4.5.4. Ingress API

This is the initial layer of the service. It takes care of the incoming messages from an
external source, the Driver Companion for instance, to perform basic filtering, and
authentication functions. It also provides a first caching structure for faster response times
and message de-duplication. In the diagram shown in Figure 4 messaging is limited to
HTTP communications only, but adapters can be put in place later to accept events from a
variety of sources. Although, as apparent from the aforementioned implementation the
purpose of this layer is slightly different depending on the requested interaction.

In the case of the Ride Tracking API, in addition to the previous points, its purpose is also
twofold: it acts as a validation mechanism for the incoming information by asking the
CbTSP, which owns them, about rides, and provides an initial checkpoint for the input
message flow. After being verified and validated, incoming requests are putin a
processing FIFO queue so that a higher demand, during rush hours for instance, will be
more manageable without slowing the application’s consumption throughput.

This, however, was deemed unnecessary for the Subscription API which is supposed to
provide much lower throughput of messages, since it is dealing only with requests before
e ride tracking process starts, or after it is completed, thus allowing it to have a direct

Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

communication channel with its core module without the need of a processing queue in
front of it.

Moreover, the presence of a message ingestion queue and the interaction between
modules makes the process guaranteed but asynchronous, which means the Driver
Companion, or other components using this service will only know that their requests have
been registered in the system but will not know when they will be taken care of.

4.5.5. Ride progress module

This is one of the two core modules of the service. It is made of multiple components and
relies on the communication structure provided by the Message Bus. It is interested in all
those events that have something to do with the ride management: its creation, a position
update or a cancellation request. While the other two are trivial, a position update event
triggers a chain of computations that require some more explanation.

Once the process of tracking has been requested for a particular ride, the Ride Progress
module creates a persistent entity to associate all the following position updates that the
Driver Companion application would send regarding this ride. Additionally, as said earlier,
it needs to ask the CbTSP for details regarding the route the driver wants to follow,
including all the intermediate stops, if any, the car will make along the path. This
information is the bare minimum to provide a delay estimate for the ride. Although, the
more intermediate points there are, the more precise the estimation can be. In case none
were selected by the driver, only the starting point and the destination will be considered.

Each time a new position for a particular ride comes in, the RP computes a rough estimate
of the distance traveled between the two currently considered checkpoints: the one the
driver has already passed and the immediate next they have not reached yet.Once this is
done, the RP estimates when the driver should have reached the current location based on
the information included within the route request it made earlier to the CbTSP, as it must
contain estimated time of arrivals too. If this estimate is greater than a pre-configured
threshold, a delay event is triggered signaling a possible disruption of the ride.

There also are scenarios in which the computation cannot be made. If the cause is the
impossibility to correctly locate the driver’s vehicle on the map, the RP will send an
additional request to the CbTSP asking to recompute the route for the ride at issue. In the
extreme case of the total impossibility to complete the evaluation, the update event is
discarded completely and the following one will be used as the new base case for
comparisons.

4.5.6. Subscription module
This is the second core module of the service. Compared to the previous one, it is more
straightforward as its main purpose is to manage subscriptions requests and
dispatchevents to third parties that are interested in them.
The API in front of it takes care of handling the requests to add or remove subscriptions of
those components that are interested in receiving notifications about a particular trip
isruption. A write-through cache has been added on top of the existing persistent storage
ce the number of requests to read the contents of this component are greater than the
ssible requests trying to modify it. Also, fewer requests with respect to the RP are

Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

expected in general, thus limiting the need of putting a message queue in front of it, as
mentioned earlier.

A consumer process works in background listening to disruption events delivered by the
Message Bus. Once such an event is caught, the process will retrieve the necessary
information about third parties interested in it from the persistent storage, and will send
the notification in the pre-configured TRIAS format the TO requires. The Subscription
module has no information about third parties other than the URL address and some
identification number it received at the moment in which a subscription was first created.
This step is thus a best effort process mainly due to the TO constraints. Any failures or
undelivered notifications are thus ignored by this component.

4.6.Asset Manager

The Shift2Rail IP4 ecosystem is a distributed environment, developed and maintained by
several companies. Such companies, while integrating TSPs into the ecosystem, need to
share consistent and structured descriptions of such services. This is the main requirement
which led to the development of the so-called “Asset Manager”, an architectural element
inside the IP4 ecosystem playing the role of a shared catalogue of digital artifacts. The
Asset Manager has been first implemented during the IT2Rail® project, then the SPRINT#
project explored how to exploit such catalogue to improve automation, providing support
for data converters and service mediators and supporting complex publication processes
involving staff permissions to publish and mail notifications.

The Asset Manager has been evolved by Cefriel into KCONG (Knowledge Catalogue aNd
Governance) as a prototype to support digital ecosystems and data fabric architectures,
and a new version of the Asset Manager has been developed to support the specific needs
of Shift2Rail IP4 members.

The Asset Manager deployed in the context of Ride2Rail project fulfills the main
requirement of providing a reference environment to store service documentations
coming from different open-call projects and transport service providers, reducing the
needs of sharing information via emails and therefore reducing the risk of a partner not
having up-to-date information while doing an integration task.

The main interface of the Asset Manager (displayed in Figure 5) allows to gain access to
structured descriptions belonging to two asset types:

e Ontologies: reference conceptual data models developed in the context of Shift2Rail
P4

ttps://cordis.europa.eu/project/id/636078/it
ome (sprint-h2020.eu)

Shift7Rail BN -

Contract No. 881825

https://sprint-h2020.eu/

D3.3 Crowd-based Travel Version 1.0 31/05/2022

e |P4 Services: services provided by IP4 members and partners as well as services
provided by Transport Service Providers

C keone

(€]
o

Shift2Rail IP4 Asset Manager

made in Cefriel

Latest
Taxiway Brainbox OASA Miraklio T™MB

([| | >
~” ~” ~” ~” ~’

Asset types

Ontology P4 Service)

Figure 6 Asset Manager main screen

When accessing an asset type, the interface shows the list of available assets and a short
list of the latest published assets, as shown in Figure 6.

C KeoNG msmonce o0& 1

P4 Service +

Latest
Taxiway Brainbox OASA Miraklio ™B
| | | | |
Assets

@ =ritens

Figure 7 Asset Manager: listing IP4 Services

26 hiftRail N

D3.3 Crowd-based Travel Version 1.0 31/05/2022

Pressing the “+” button allows adding a new asset, while clicking on an item allows
inspecting the description of an asset, as shown in Figure 7.

C KCONG IP4SERVICE > BRAINBOX Ol =]

Brainbox ’ 3

1P4 Service
Publisher: alexandernemirovskiy@polimi.it

METADATA

Name.
Brainbox

Descrintion
Description of services provided by Brainbox

Version
10

Company /institution name
Brainbox/Certh

Contacts

fullname

Vassilis Mizaras
mai

wmiz@certh. gr

liname
George Keikoglou

....]
gkelkoglou@brainbox.gr

Language v

Service maturity
Beta -

Figure 8 Asset manager: IP4 Service description

4.6.1. IP4 Service descriptor

Users can insert descriptions of IP4 Services by filling a dynamic form provided by the Asset
Manager and shown in Figure 8.

Shift7Rail BN

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

C reons mowons o

1P4 Service

Erreep—

o

Figure 9 Asset Manager: capturing structured description of an IP4 Service

A brief explanation of the meaning and expected values of the fields in the form is explained
below:

e Name: name of the service
e Description: textual description of the service providing hints about its functionalities
e Version: service version or version number of the description of the service
e Company/institution name: company owning the service (it may be different from
the TSP)
e Contacts
o Full name: full name of the contact person
o Email: email address of the contact person
e Language: language used in the service
e Service maturity:
o Planned: the service is only planned, so all the provided documentation is
intended only for future integration
o Beta: the service is being tested and improved, it may not be reliable
o In production: the service is ready, stable and can be accessed reliably

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel

O
O

Version 1.0 31/05/2022

Deprecated: the service is being dismissed
Dismissed: the service is not active anymore

e Related demo sites: list of demo sites where the service is being used

e Related projects: list of projects where the service is being used

e Transport service providers using this service: list of Transport service providers
using the service.

e Technical documentation: a list of files providing a general documentation for the

service

e API Descriptions

O
O

(@]

API Endpoint: URL of the API endpoint
Communication family: technology used to exchange data with the endpoint
= SOAP

= REST

= Web API

= FTP

= GraphQL

= MQTT

= AMQP

= Kafka

= Other
Data model:

= Standard: specification/standard whose data model is used by the

service

= |ocal ontology: ontology already listed in the catalogue providing the
data model for the service
= Remote ontology: URL of an ontology (not already listed in the
catalogue) providing the data model for the service
= Custom/proprietary: the data model is custom/proprietary and
doesn’t refer to any existing standard or ontology
APl Descriptor: URL of the Swagger/OpenAPl or WSDL or any other
structured description of the API
Example requests and responses: this field allows stating where examples of
the requests and responses can be found. The options are:
= Requests and responses are already described in the technical
documentation
= Requests and responses are already described in the API descriptor
= Upload a document containing the examples
Explanation of the fields used in the calls: this field allows providing an
explanation of the parameters to be used when invoking the API. The options
are:
= APl parameters are already described in the technical documentation
= API parameters are already described in the API descriptor
= Upload a document containing the parameters description
Authentication mechanism: this field allows describing the authentication
process to be followed to access the API functionalities. The options are:
= Authentication instructions are already provided in the technical
documentation
= Authentication aspects are already described in the API descriptor

Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

= Upload a document containing authentication instructions
o Additional comments: a free-text field which allows documenting other
aspects of the interaction with the API not already covered by the other fields
o IP4-Related information: Shift2Rail IP4 identified a list of functionalities to be
provided by the TSP services to be integrated. For specific functionalities IP4
must obtain additional information.
= Journey planning
e Supported transport modes: list of transport modes supported
by the TSP via this API
e GTFS URL: URL of the GTFS file providing the TSP’s timetables
e GTFS Upload: as an alternative, the user can directly upload
the GTFS dataset
e GTFS validity: temporal validity of the GTFS dataset
e GeoJSON coverage area: coverage area of the service being
provided by the TSP
= After sales
= Offer building
= Booking
e Booking expiration time: this field allows stating for how many
seconds a booking offer will remain valid

= |ssuing
e Ticket type
o QR code
o Image
o PDF
o Other

e Validation comments: additional information concerning how
the passenger is expected to validate the ticket
= Ancillary service
= Trip tracking

4.6.2. IP4 Service lifecycle process

The Asset Manager, as introduced in the IT2Rail project, can manage the entire lifecycle of
the description of an asset. Starting from the SPRINT project such functionality is
implemented by specifying an executable BPMN process, which orchestrates the internal
services provided by the Asset Manager and potential external services, and allows stating
when a user is expected to provide decisions in order for the publication process to be
completed.

The publication process required by the Shift2Rail IP4 members, shown in Figure 9, is
centered around the concept of notifying via email a group of people (the IP4 Staff
members) whenever an asset is added to the catalogue or modified. The IP4 Staff also has
the permission to modify any asset description.

30 Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

©

Set status to
Published

Lol G

Transform Notify
metadata to publication to Notify IP4 Staff
RDF Asset owner

Asset manager

New Asset added

Figure 10 Asset Manager: IP4 Service publication process

31 hiftRail N

D3.3 Crowd-based Travel Version 1.0 31/05/2022

CONCLUSIONS

In this deliverable, the results of Task 3.3 (T3.3) - CbTSP formally known as Crowd Based
Travel Service Provider, in the context of WP3 of the RIDE2RAIL (R2R) project, have been
described.

A set of components that work together in order to reach the goal of acting as a Travel
Service Provider when seen from the outside has been developed; the behaviour is similar
to a general TSP, there are functionalities exposed that allows whichever entity that
integrates with it that acts as a “traveller” to search for travel solutions inside the context
of this specific TSP and there are functionalities that offer whichever entity that acts as a
“driver” to plan routes and publish travel solutions for the travellers to search.

There is a core difference between a classical TSP and the CbTSP: on “HOW?” the available
travel solutions are produced. In a standard TSP (i.e. the service of a city bus line), travel
solutions are severely planned over a medium/long period of time. Meaning that for
example at the start of the year, all the rides of all the lines, at every given time are
planned, it’s then only a matter of matching an incoming request including departure,
arrival and time, in order to answer with a set of available rides. In the CbTSP does not
work in this way: there is not any option to know in advance if there will be an available
ride matching some criteria at a given time. People that decide to offer a ride are
responsible for dinamically inserting rides into the system based on their willingness.

Every driver entity can insert, delete or modify new rides whenever they want, and so the
traveller entities may find very different sets of solutions, depending on the type and
qguantity of rides offered at the specific moment in time they do the search. In short, the
set of possible travel solutions that the CbTSP can offer to a general “traveller” is
dynamically created and modified in correlation to the actions done by their “driver”
counterparts.

The task was meant to implement a piece of software that presents itself as a TSP, and
acts like one. i.e anyone can ask the CbTSP to give all the travel solutions that are
availeble, that can allow a passenger to depart from a point A, arrive at a point B starting
from a said departure time on, just like any general TSP. Those travel solutions however
don’t come from an “a priori” planning, but are evaluated based on offerings of rides given
by specific users of the system (identified as drivers) who decides to share their car in a
planned route of their own (carsharing logic). Those offered rides are “born” dynamically
into the system based on the interaction of the drivers

The CbTSP can be seen as a special hybrid type of TSP which merges together the
functionality of a common TSP, plus the functionality of a carsharing service in order to
achieve this goal.

When a “driver” entity decides to insert a ride, it asks the system to plan a route between a
starting point and a destination point, the planner component computes the solution and
adds it to its set of available travel solution, at this point a new ride has been created with
its associated route plan, which includes also the starting date and time. If subsequently

he system is asked to find a solution for a traveller, and the search criteria matches the
operties of the ride above among others, then that ride will be included in the set of

vel solutions proposed to the traveller to choose from; the traveller then choses the

Shift7Rail BN -

0. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

wished solution and asks the system for reservation of a lift on that ride, at this point the
association is completed and a traveller, a driver and a ride are correctly associated
(basically the passenger has reserved a seat in a car offered by a driver).

Due to its dynamic nature, travel solutions are held in memory, and also the geographical
data to speed up computations, this implies that the memory footprint of the CbTSP,
especially of the planner component is directly correlated to the size of the geographical
area on which it operates.

At the current state the components, and in general the solution provided covers all the
objectives required by the WP3 - task 3.3.

It would be pleasant in the future to consider the possibility to research and develop a
distributed version of the planner component in such a way that every instance takes care
of a specific geographical area in a way that when there is a need to compute a travel
solution, it can be composed by the sub-solutions of every instance involved in the
computation.

Shift7Rail BN -

Contract No. 881825

D3.3 Crowd-based Travel Version 1.0 31/05/2022

5. REFERENCES

OpenTripPlanner
Ride2Rail/CbTSP-r2r-Docker: Repository for CbTSP docker stack (github.com)

Alqguiler de coches particulares - SocialCar
https://spring.io/

O O O O

Shift2Rail N -

Contract No. 881825

https://www.opentripplanner.org/
https://github.com/Ride2Rail/CbTSP-r2r-Docker
https://www.socialcar.com/
https://spring.io/

